This video was shown in one of the sessions; the speaker was
Professor Philip Willis of The University of Bath's Computer Science department.
It shows various pieces of video that have been converted to a contour/vector representation where instead of using pixels in a raster to represent video they use contours (which also have shading associated with them) and vectors (which dictate how the contours are moving). This is not an effort to compress the data load; although Prof. Willis was at pains to point out that they have not made any efforts to optimise or do any bit-rate reduction calculations on the data, rather it is a way of representing high resolution video in a pixel-free manner. This might provide a useful transport/mezzanine format for moving 4k and 8k television around, rendering the pictures at the resolution of the target display device.
The upshot of this is that rendering at a higher resolution than the material was shot at shows none of the aliasing that you'd expect from pixel-based video. Although you can't get more detail than was there originally the codec fails gracefully such that the images are not unpleasant to look at (unlike the low-res YouTube clip above!).
Prof. Willis gave a tantalizing little extra in the Q&A sessions - he implied that they are looking to give the contours/vectors a time-based element so that they move not only in X-Y space, but along the t-axis such that the pixel-free video now becomes frame free! You can render the resulting data as easily at 1920x1080 @60FPS as you could 720x576 @59.98 fields without any aliasing in the spacial dimensions OR temporally; say goodbye to standards conversion!
The
original paper is a bit heavyweight but if your happy with vector maths it is understandable.